For semisimple Lie algebra targets
For discrete group targets
For discrete 2-group targets
For Lie 2-algebra targets
For targets extending the super Poincare Lie algebra
(such as the supergravity Lie 3-algebra, the supergravity Lie 6-algebra)
Chern-Simons-supergravity
for higher abelian targets
for symplectic Lie n-algebroid targets
for the -structure on the BRST complex of the closed string:
higher dimensional Chern-Simons theory
topological AdS7/CFT6-sector
Topological Physics – Phenomena in physics controlled by the topology (often: the homotopy theory) of the physical system.
General theory:
In metamaterials:
For quantum computation:
By abelian Chern-Simons theory one means Chern-Simons theory with abelian gauge group (typically the circle group or a torus-product of copies of these).
One major application of abelian Chern-Simons theory is as an effective field theory of the fractional quantum Hall effect.
For abelian Chern-Simons theory with gauge fields and Lagrangian density of the form (for an symmetric matrix and using Einstein summation convention), the dimension of the Hilbert space of quantum states (obtained by geometric quantization, cf. quantization of D=3 Chern-Simons theory) over a surface of genus is the absolute value of the determinant of raised to the th power:
(for see Manoliu 1998a p 40, for general cf. Belov & Moore 2005 p 26)
Alexios P. Polychronakos: Abelian Chern-Simons theories in dimensions, Annals of Physics 203 2 (1990) 231-254 [doi:10.1016/0003-4916(90)90171-J]
Sergio Albeverio, J. Schäfer: Rigorous Approach to Abelian Chern-Simons Theory, in Groups and Related Topics, Mathematical Physics Studies 13, Springer (1992) 143-152 [doi:10.1007/978-94-011-2801-8_12]
G. Giavarini, C. P. Martin, F. Ruiz Ruiz: Abelian Chern-Simons theory as the strong large-mass limit of topologically massive abelian gauge theory: the Wilson loop, Nucl.Phys. B 412 (1994) 731-750 [arXiv:hep-th/9309049, doi:10.1016/0550-3213(94)90397-2, pdf]
Mihaela Manoliu: Abelian Chern-Simons theory, J. Math. Phys. 39 (1998) 170-206 [arXiv:dg-ga/9610001, doi:10.1063/1.532333]
Mihaela Manoliu: Abelian Chern-Simons theory. II: A functional integral approach, J. Math.Phys. 39 (1998) 207-217 [doi:10.1063/1.532312]
Dmitriy Belov, Gregory W. Moore: Classification of abelian spin Chern-Simons theories [arXiv:hep-th/0505235]
Spencer D. Stirling: Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories, PhD thesis, Austin (2008) [arXiv:0807.2857, pdf, ProQuest]
Diego Delmastro, Jaume Gomis: Symmetries of Abelian Chern-Simons Theories and Arithmetic, J. High Energ. Phys. 2021 6 (2021) [doi:10.1007/JHEP03(2021)006, arXiv:1904.12884]
Many general reviews of Chern-Simons theory have a section focused on the abelian case, for instance:
Gregory Moore, §2 in: Introduction to Chern-Simons Theories, TASI lecture notes (2019) [pdf, pdf]
David Grabovsky, §1 in: Chern–Simons Theory in a Knotshell (2022) [pdf, pdf]
On the light-cone quantization of abelian Chern-Simons theory:
Prem P. Srivastava: Light-Front Dynamics of Chern-Simons Systems [arXiv:hep-th/9412239]
L. R. U. Manssur: Canonical Quantization of Chern-Simons on the Light-Front, Phys. Lett. B 480 (2000) 229-236 [arXiv:hep-th/9910127v1, doi:10.1016/S0370-2693(00)00380-4]
On boundary conditions and line-defects in abelian Chern-Simons theory:
Anton Kapustin, Natalia Saulina: Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B 845 (2011) 393-435 [arXiv:1008.0654, doi:10.1016/j.nuclphysb.2010.12.017]
Anton Kapustin, Natalia Saulina, §3 in: Surface operators in 3d TFT and 2d Rational CFT, in: Hisham Sati, Urs Schreiber (eds.), Mathematical Foundations of Quantum Field and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics 83, AMS (2011) [arXiv:1012.0911, ams:pspum-83]
Anton Kapustin: Ground-state degeneracy for abelian anyons in the presence of gapped boundaries, Phys. Rev. B 89 (2014) 125307 [arXiv:1306.4254, doi:10.1103/PhysRevB.89.125307]
In relation to the dilogarithm:
The idea of abelian Chern-Simons theory as an effective field theory exhibiting the fractional quantum Hall effect (abelian topological order) goes back to
Steven M. Girvin, around (10.7.15) in: Summary, Omissions and Unanswered Questions, Chapter 10 of: The Quantum Hall Effect, Graduate Texts in Contemporary Physics, Springer (1986, 1990) [doi:10.1007/978-1-4612-3350-3]
Steven M. Girvin, A. H. MacDonald, around (10) of: Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect, Phys. Rev. Lett. 58 12 (1987) (1987) 1252-1255 [doi:10.1103/PhysRevLett.58.1252]
S. C. Zhang, T. H. Hansson S. Kivelson: Effective-Field-Theory Model for the Fractional Quantum Hall Effect, Phys. Rev. Lett. 62 (1989) 82 [doi:10.1103/PhysRevLett.62.82]
and was made more explicit in:
Xiao-Gang Wen, Anthony Zee: Quantum statistics and superconductivity in two spatial dimensions, Nuclear Physics B – Proceedings Supplements 15 (1990) 135-156 [doi:10.1016/0920-5632(90)90014-L]
B. Blok, Xiao-Gang Wen: Effective theories of the fractional quantum Hall effect at generic filling fractions, Phys. Rev. B 42 (1990) 8133 [doi:10.1103/PhysRevB.42.8133]
Z. F. Ezawa, A. Iwazaki: Chern-Simons gauge theories for the fractional-quantum-Hall-effect hierarchy and anyon superconductivity, Phys. Rev. B 43 (1991) 2637 [doi:10.1103/PhysRevB.43.2637]
A. P. Balachandran, A. M. Srivastava: Chern-Simons Dynamics and the Quantum Hall Effect [arXiv:hep-th/9111006, spire:319826]
Ana Lopez, Eduardo Fradkin: Fractional quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B 44 (1991) 5246 [doi:10.1103/PhysRevB.44.5246]
Jürg Fröhlich, Anthony Zee: Large scale physics of the quantum hall fluid, Nuclear Physics B 364 3 (1991) 517-540 [doi:10.1016/0550-3213(91)90275-3]
Xiao-Gang Wen, Anthony Zee: Topological structures, universality classes, and statistics screening in the anyon superfluid, Phys. Rev. B 44 (1991) 274 [doi:10.1103/PhysRevB.44.274]
Xiao-Gang Wen, Anthony Zee: Classification of Abelian quantum Hall states and matrix formulation of topological fluids, Phys. Rev. B 46 (1992) 2290 [doi:10.1103/PhysRevB.46.2290]
Xiao-Gang Wen, Anthony Zee: Shift and spin vector: New topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69 (1992) 953, Erratum Phys. Rev. Lett. 69 3000 (1992) [doi:10.1103/PhysRevLett.69.953]
Xiao-Gang Wen: Theory of Edge States in Fractional Quantum Hall Effects, International Journal of Modern Physics B 06 10 (1992) 1711-1762 [doi:10.1142/S0217979292000840]
Early review:
Anthony Zee: Quantum Hall Fluids, in: Field Theory, Topology and Condensed Matter Physics, Lecture Notes in Physics 456, Springer (1995) [doi:10.1007/BFb0113369, arXiv:cond-mat/9501022]
Xiao-Gang Wen: Topological orders and Edge excitations in FQH states, Advances in Physics 44 5 (1995) 405 [doi:10.1080/00018739500101566, arXiv:cond-mat/9506066]
Further review and exposition:
Yuan-Ming Lu, Ashvin Vishwanath, part II of: Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach, Phys. Rev. B 86 (2012) 125119, Erratum Phys. Rev. B 89 (2014) 199903 [doi:10.1103/PhysRevB.86.125119, arXiv:1205.3156]
Edward Witten: Three Lectures On Topological Phases Of Matter, La Rivista del Nuovo Cimento 39 (2016) 313-370 [doi:10.1393/ncr/i2016-10125-3, arXiv:1510.07698]
David Tong §5 of: The Quantum Hall Effect, lecture notes (2016) [arXiv:1606.06687, course webpage, pdf, pdf]
Josef Wilsher: The Chern–Simons Action & Quantum Hall Effect: Effective Theory, Anomalies, and Dualities of a Topological Quantum Fluid, PhD thesis, Imperial College London (2020) [pdf]
For discussion of the fractional quantum Hall effect via abelian but noncommutative (matrix model-)Chern-Simons theory
On edge modes:
Further developments:
Dmitriy Belov, Gregory W. Moore, §7 of: Classification of abelian spin Chern-Simons theories [arXiv:hep-th/0505235]
Christian Fräßdorf: Abelian Chern-Simons Theory for the Fractional Quantum Hall Effect in Graphene, Phys. Rev. B 97 115123 (2018) [doi:10.1103/PhysRevB.97.115123, arXiv:1712.03595]
Kristan Jensen, Amir Raz: The Fractional Hall hierarchy from duality [arXiv:2412.17761]
Last revised on January 5, 2025 at 08:07:14. See the history of this page for a list of all contributions to it.